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Configurational properties of athermal self-avoiding 
polymer chains at intermediate to high concentrations 

Clive A Croxton 
Department of Mathematics, University of Newcastle, Newcastle, NSW, 2308 Australia 

Received 16 January 1979 

Abstract. A screened convolution approximation is introduced for the specification of 
internal and end-to-end probability distributions at various packing fractions. The compet- 
ing effects of inter- and intra-chain exclusion are investigated, and the conformations of the 
chains determined as a function of packing fractions. The equation of state for relatively 
short chains at intermediate to high concentrations is determined. 

1. Introduction 

In the two preceding papers (Croxton 1979a, b, hereafter referred to as I and I1 
respectively) a diagrammatic technique was developed of comparable status to the 
machine exact enumeration methods for relatively short polymer chains. In the studies 
reported in I and I1 the diagrammatic method was developed and cast into a simple 
convolution form which had the advantage of retaining the essential qualitative features 
of the system for short to intermediate isolated chains of self-avoiding segments, but 
degenerated into a random flight assembly of unit rods as the number of segments 
became large. Nevertheless, the essential features of the end-to-end probability 
distribution and the internal distributions, their dependence upon total chain length, 
and the location of the subset within the chain were determined, together with the 
radius of gyration of the chain. 

In this paper we attempt to determine the effect on these characteristics for a 
polymeric system in which both intra- and inter-molecular interactions develop; in 
other words, to consider the effects on, for example, molecular span as a function of 
chain concentration for a monodisperse assembly of polymers having a specified 
number of segments N: 

2. Inter- and intra-molecular interference 

Numerous methods have been developed in various attempts to describe the con- 
formations of an isolated self-avoiding macromolecule; the properties of such a system 
are determined as appropriate averages over all accessible conformations of the chain. 
The preservation of sequential order of the segments and cohesion of the chain severely 
restricts the number of accessible conformations which the system may adopt, and 
although no exact solution to the problem has been proposed so far, exact enumeration 
techniques on lattices of various geometries and dimensions have led to a relatively 
clear picture of the behaviour of relatively short isolated chains enabling extrapolations 
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to long contour lengths to be made (I). Such systems correspond to infinitely dilute 
polymeric solutions since interactions are purely intra-molecular; the enormously more 
difficult problem concerning the effect of inter-molecular interactions arising in solu- 
tions of moderate to high concentration has received relatively little attention. 
However, it is generally believed that inter-molecular interaction causes an overall 
reduction in chain dimensions. This is, of course, readily understood physically in terms 
of inter-molecular interference, in addition to intra-molecular or excluded volume 
effects. Monte Carlo studies by Bellemans and De Vos (1973) for polymer chains of 
length 10,20 and 30 segments on simple cubic lattices up to 95% of bulk concentration 
appear to confirm the supposition. Indeed, the exponent y in the expression for the 
mean square end-to-end separation 

(R:) - n ", (1) 

where n = N - 1 is the number of links, was determined to be 1.07 * 0.01 at bulk 
concentration and for long chain lengths. This value is to be compared with y - 1.20 
which appears to characterise isolated polymers, and y - 1.00 for an unrestricted 
random walk. Of immediate interest, however, is Flory's contention that at high 
concentrations the expansive intra-molecular effects become indistinguishable from 
the confining inter-molecular intersections, and so there is no net effect, the end-to-end 
probability distributions assuming a Gaussian form with y = 1. An analysis by Fixman 
and Peterson (1964) at 100% concentration, and more recently by Edwards (1975), 
appears to support this conjecture. Unfortunately experimental evidence cannot yet 
unequivocally resolve the precise behaviour, and the question remains. 

A recent simulation by Wall and Seitz (1977) for chains of length n = 8 as functions 
of concentration up to 95% of bulk on various two- and three-dimensional lattices 
shows that average chain dimensions decrease markedly with increasing concentration, 
and they suggest that the limiting bulk values of the shape parameters correspond to the 
values for eight-step random walks without step reversals (second-order walks). 

Consider N, chains of N freely jointed hard sphere segments of diameter U confined 
within a volume V. We shall designate the packing fraction as 

77 = NN,ru3/6  V, (2) 
and the athermal partition function Z I N  for the first chain with its end segments held at 
a separation rlN to be 

where (drNNC)' = dr2 . . . drNNc excluding dr l ,  dr,. The total interaction energy UNc is 

The second term represents the interaction between non-sequential segments whether 
they be on the same or different chains. The first term preserves monodisperse 
sequential order amongst N ,  distinct chains cy,. . . , K,  A , .  . . , N ,  by means of an 
interaction 

ri,i+l # 1, A = K,  

ri,i+l = 1, A = K ,  

ri,i+lZ=O, A # K.  
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Further progress may be made as in I by writing 

whereupon (3) becomes 

Expansion of the second product in the integrand, regrouping and weighting of 
topologically degenerate products is recognised as no more than the partition function 
for a hard sphere fluid of NN, segments: resolution into discrete chains of N segments is 
effected by the first product in the above integrand. This term effectively restricts the 
accessible conformations which the 'fluid' diagrams may adopt. Of course, this is no 
more than a reformulation of the initial problem. It does, however, suggest how some 
qualitative progress may be made. If we continue to confine our attention to the first N 
segments constituting the first polymer chain we may regard each such segment as 
interacting with an effective density-dependent interaction Y(riilv) appropriate to a 
fluid at the packing density 17 under consideration. This neglects sequential ordering 
amongst segments N + 1 + NN,, and amounts to a consideration of an isolated polymer 
in a solvent of its own segments. This is likely to be a good approximation at high 
densities where discussion is generally restricted to cell theory descriptions. 

The effective density-dependent interaction referred to above is, of course, the 
potential of mean force related to the fluid radial distribution g(&) through the 
Boltzmann factor: g(z)(rlq) = exp(-Y(r'(rlv)/kT). In the present analysis we adopt the 
Percus-Yevick (PY) representation of the radial distribution and endow each segment 
in the chain under consideration with the effective interaction Ypy(rlq). In the limit of 
low densities Y(rlq) reverts to the hard sphere interaction, while at high densities 
interference and screening effects introduce oscillations in the effective interaction. 

The equation of state of the multiple-chain system follows directly from the 
standard relation 

P = k T  a In Z ( 1 N)/a V, (8) 

which leads to (Curro 1976) 

where rcz)(r) is an 'inter-chain radial distribution' defined by 

with Z""(rij) the normalised probability that segment i on chain K is distance rii from 
segment j on chain A .  Attention is drawn to the fact that T(2) contains contributions to 
the pressure arising from distinct chains only: a simple consequence of Newton's third 
law applied within any given chain. In the case of simple (disconnected) fluids the total 
radial distribution appears in (9). Since intra-chain correlations do not contribute to the 
pressure virial, it is apparent from the outset that the external pressure will be less than 
that of a corresponding system of disconnected segments. Since we intend using the 
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total (internal + external) function gp: (rlv) for the effective inter-segment distribution, 
the distinct distribution in (9) follows as 

The result has been given in terms of the contact values ( r  = a) appropriate to the hard 
sphere interactions. Zii Z(ij\N),.m refers to the superposition of all internal dis- 
tributions within the N-mer at contact at the appropriate packing fraction. This term 
vanishes of course for fluid systems of disconnected segments, and contributes most 
strongly at low packing densities for short chains having large contact values Z(ij/N),,,u. 

The equation of state for a system of N ,  chains of length N is, finally, 

The external pressure P may be identified with the osmotic pressure Il of an athermal 
polymer solution (no heat of mixing) where polymer-solvent interactions may be 
neglected. It should be noted that equation (12) correctly reduces to the equation of 
state of a hard sphere fluid in the PY approximation when N + 1, Nc+ N and 
Z(ijlN) + 0. Application of approximation (1 1) is restricted to intermediate to high 
packing fractions, when the effective inter-segment interaction is reasonably described 
by the potential of mean force q(r177).  At low densities there is some difficulty, 
however, since local fluctuations in density attending the simultaneous interaction 
between two or more chains make the specification of a system density ambiguous. 

The Flory-Huggins (FH) equation of state was also developed for intermediate 
packing fractions. In their analysis the osmotic pressure ll is determined as the free 
energy of mixing, and the solvent-polymer interaction is set equal to zero, whereupon 

(13) 

Comparison with this equation of state will be made in 9: 4. At high packing fractions a 
cell model is generally adopted (Nanda and Simha 1964, Curro 1974, 1976): 

II V/N,kT = 1 - N [  77 -' In( 1 - 77) + 13. 

PV/N,kT = (1 +N/3)(1 -0-80577''3)-'. (14) 

Such an equation of state is based essentially upon a solid state model and cannot be 
expected to reflect accurately the free rotational degrees of freedom implicit in the 
chain's specification. 

As in I and 11, the end-to-end Z(1N) and interval Z ( l i lN) ,  Z(i j lN)  distributions 
are determined as functions of the packing fractions through the relations 

Z (1N) = H (  1N) Z( 1, N - 1)s ( N  - 1, N )  d(N - l), (15) 

(16) 

(17) 

Z(1i lN) = Z(1i jN - 1) j' Z ( l N ) Z ( i N I N  - 1) W, 

Z(i j lN)  = Z(ijlN - 1) 1 Z ( l i I N ) Z ( l N )  d l ,  

where 

H(1N) =exp(-V(lN)).  
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3. Chain conformations 

In figure 1 we show the development of the normalised end-to-end probability 
distribution ZIN for N = 4 and 8 as a function of packing density. From a smooth curve 
at 77 = 0 corresponding to the isolated chain result, the distribution develops 
pronounced oscillations with increasing density. Apart from the first peak, subsequent 
oscillations in the distribution need not be, and in general are not, located at integral 
multiples of the segment diameter-a reflection of the chain flexibility. Indeed, the 
long-range form of ZIN is determined more by the constraint of contour length than by 
geometrical packing. There is clearly a subtle interplay between the amplitude and 
location of a peak in determining its effect upon, for example, the second moment 

The rapid growth of the 1N contact probability Z ( r l ~  = 1) with density most certainly 
has the effect of depressing the value of the exponent y. There is, however, no a priori 
reason to anticipate a limiting behaviour y + 1 as density and chain length increase. 
Certainly such distributions are not consistent with random walk behaviour, nor even 
the second-order random walk of the kind advocated by Wall and Seitz (1977), in which 
immediate step reversals to form loops of length two are forbidden, although longer 
loops and the double occupancies attending their formation are allowed. This is not to 
say, however, that the exponent cannot still be unity; indeed, such a situation charac- 
terises the theta point for realistic interactions, according to some definitions. For such 
realistic systems the theta point corresponds to the Boyle temperature of fluid systems 
when the net effects of attraction and repulsion cancel: in the case of a polymer the 
system is characterised by the exponent y = 1. At lower temperatures the molecular 
conformations are dominated by the attractive interaction between non-adjacent 
segments, and y decreases further. In the case of an athermal chain of hard spheres it is 
the effects of density rather than temperature which prevail, and it may well be that the 
theta point for dense assemblies occurs in the limit of maximum packing density. 

As we observed in I and 11, the present convolution approximation consistently 
underestimates the chain dimensions for isolated chains, although the essential quaiita- 
tive features are believed to be retained, at least for chains of short to intermediate 
length. In figure 2 we show the mean square molecular span as a function of 
packing fraction. The chains are seen to collapse rapidly with increasing concentration, 
and approach-though not necessarily tend to-the unrestricted random walk result 
(R:N)O = N - 1. The apparent molecular expansion which develops at high concen- 
trations for short chains is believed to be an artefact of the PY approximation, which is 
known to overestimate the amplitude of the oscillations in YpY(r(q) at high densities. 
The effect is to weight expanded configurations unduly; this is particularly evident in 
figure 1 for N = 4 at high concentrations. For long chains this overestimate partially 
compensates the cumulative collapse attributable to the convolution approximation, 
and the curves are probably qualitatively acceptable, although the points of inflection 
are undoubtedly attributable to the competing effects of convolution collapse and PY 
expansion. 

Bellemans and De Vos (1973), in a recent simulation, investigated the ratio 
( R : N ) , J ( R ? N ) ~ = O  for athermal chains on a simple cubic lattice as a function of packing 
fraction. Each site may be occupied either by one element of a chain molecule or by a 
solvent molecule. At low to intermediate concentrations the ratio decreases almost 
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Figure 1. The development of the end-to-end probability distribution function Z l S  as a 
function of packine fraction n :  ( a )  for N -= 4: i b )  for N = 8. 
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Figure 2. The variation of mean square molecular 
span ( R t N )  as a function of packing fraction. 
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linearly with q :  a rough estimate suggests 

(R:N), , / (R:N)n=O-l  -0.04(N-1)0’7q +. . . .  

and this is shown in figure 2 for N = 6,lO. Both the machine simulations and the 
present results show a similar decrease with concentration, with a rather strong N 
dependence. 

The internal distributions and molecular spans are considerably more complex. As 
in the case of isolated chains, the expansion of a given subset of segments depends both 
on the location of the subset within the chain and on the chain’s contour length. 
Additionally, of course, these results are now functionally dependent on packing 
density. In figure 3 we show (R:i~N), ,  -(R:,),, as a function of q. As in the case of an 
isolated chain, the effect of a ‘tail’ is to cause an expansion in the subset ( l i ( N )  relative 
to a chain (li),,, the expansion saturating with increasing N and ultimately showing a 

. . . . . . .  
L 8 12 16 20 

N 

I 

L , . . * , . . . . . . . . , , , ,  
8 12 16 20 L 

N 

Figure 3. (continued on next page) 
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0.41 

N 

Figure 3. The relative expansion (RfilN), ,  - ( R f i ) , ,  of a semi-internal subset with respect to 
its isolated counterpart at the same packing fraction. 

weak collapse as the long tail ‘confines’ the subset. This is apparent only for relatively 
short subsets, though undoubtedly occurs ultimately for all subsets (1 ii N) provided 
N >> i. With increasing concentration the intra-molecular expansion is gradually offset 
by inter-molecular confinement, and at high concentrations for short subsets in long 
chains there is evidence that ( R : i ~ N ) I  -(I?&),, actually becomes negative. 

Similar observations hold for the purely internal expansions ( R % I ~ ) , ,  - (R 2),, (figure 
4). As in the case of isolated chains an additional segment applied to the shorter of the 
two tails (1 + i - l), ( j  + 1 + N )  effects the greater expansion, although confinement 
suppresses the behaviour as 77 increases. 

O t  

I (14.17120) 
= (15.18l20) 

= 116,19120) 

= 117.2Ol20~ 

I . * .  I * . I I  I k b I I  , , I (  

4 8 12 16 20 

Figure 4. (continued overleaf). 
N 
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1 . L ' ' ' ' ' I 1 . 1  ' ' ' ' ' 
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Figure 4. The relative expansion (Rf,iN),, -(Rf,),,  of a totally internal subset with respect to 
its isolated counterpart at the same packing fraction. 

4. Equation of state at intermediate to high densities 

The equation of state for an athermal monodisperse system of N, chains of N segments 
has been determined in the screened convolution approximation (SCA) to be (equation 
(12)) 

The constraint that sequential ordering be preserved effectively reduces the number of 
those degrees of freedom which contribute to the pressure, and so the pressure will be 
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consistently less than that of a dissociated system of NNc hard sphere segments by an 
amount which depends upon the intra-chain correlations Z ( i j ( N ) .  A comparison of the 
SCA, FH and PY hard sphere equations of state is shown for relatively short chains as a 
function of packing fraction in figure 5 .  Unfortunately there is no reliable machine 
simulation data available over this concentration range, although from an extrapolation 
of Curro’s (1976) recent simulation it is clear that the hard sphere and FH isotherms 
bracket the true equation of state. It would therefore appear that the SCA provides the 
closest description so far. Further improvement may readily be achieved by the use of 
more accurate contact values of the radial distribution g(2)(cr)q):  the PY value is known 
to be an overestimate. The internal contact amplitudes Z(ij/N), , ,c are also over- 
estimated in the SCA, however, although this is likely to be subordinate to the error in 
g&Id. 

ll 

FIgure 5. Comparison of the hard sphere fluid FH and screened convolution equations of 
state for relatively short polymer chains. The hard sphere fluid and FH isotherms are known 
to bracket the exact result. 

5. Conclusions 

The SCA accounts for the progressive collapse of chain dimensions with concentration as 
anticipated from a priori considerations. The end-to-end probability distribution 
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develops a pronounced oscillatory structure reflecting geometric exclusion effects 
within the chain at high packing fractions. The expansion of internal subsets of 
segments which arises in isolated chains on account of ‘tail interference’ is gradually 
suppressed with increasing density, and at high packing fractions may actually become 
negative with respect to an isolated system. 

The equation of state shows a behaviour intermediate between that of a hard sphere 
fluid of the same number of segments and the FH isotherm, which are known to bracket 
the exact result. Unfortunately no machine isotherms are available at high packing 
fractions, although extrapolation of Curro’s Monte Carlo data confirms the qualitative 
correctness of the screened convolution isotherm. 
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